skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Patrick, Samantha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Climate change has marked effects on global weather patterns and oceanic systems, impacting animal behaviour and fitness in potentially profound ways. Despite this, we lack detailed information about species’ responses to climatic variation. Using an 11-year tracking dataset of over 300 individual birds, we explore the consequences of variation in the Southern Annular Mode (SAM) and Southern Oscillation Index (SOI) for individual behaviour and fitness in wandering albatrosses Diomedea exulans breeding in the Southern Indian Ocean. Our results reveal distinct responses between males and females to climatic variation that align with the impacts of each climatic index on the distinct foraging ranges of each sex. In positive SAM phases, linked to poorer foraging conditions in female ranges and better conditions in male ranges, females exhibited behaviour consistent with reduced foraging success: that is, fewer prey capture attempts, and more movement between feeding patches. Males, on the other hand, showed no behavioural change. During positive SOI phases, associated with good foraging conditions in both male and female foraging ranges, both sexes showed evidence of more successful foraging, with birds engaging in more search behaviour, and taking shorter trips with fewer prey capture attempts, together indicating increased food intake per unit time. We found limited evidence for a role of individual variation, as measured through differences in personality, suggesting that plastic responses to climate are sufficiently important so as to obscure inter-individual variation. Supporting this was the finding that individual breeding success was unaffected by climatic variation, suggesting that plastic foraging behaviour allows albatrosses to mitigate climate impacts and maintain reproductive output. 
    more » « less
  2. Knowledge of how animals respond to weather and changes in their physical environment is increasingly important given the higher frequency of extreme weather recorded in recent years and its forecasted increase globally 1,2. Even species considered to be highly adapted to extremes of weather, as albatrosses are to strong winds 3–5, may be disadvantaged by shifts in those extremes. Tracked albatrosses were shown recently to avoid storms and the strongest associated winds 6. The drivers of this response are so far unknown, though we hypothesise that turbulent storm conditions restrict foraging success, possibly by reducing the detectability or accessibility of food, and albatrosses divert towards more profitable conditions where possible. We tested the impact of physical environment - wind speed, rainfall, water clarity, and time of day - on feeding activity and success of two species of albatrosses with contrasting foraging strategies. We tracked 33 wandering and 48 black-browed albatrosses from Bird Island (South Georgia) with GPS and immersion loggers, and 19 and 7 individuals respectively with stomach-temperature loggers to record ingestions, providing an in-depth picture of foraging behaviour. Reduced foraging profitability (probability of prey capture and overall mass) was associated with stormy conditions, specifically strong winds and heavy rain in surface-seizing wandering albatrosses, and probability of prey capture was reduced in strong winds in black-browed albatrosses. We show that even highly wind-adapted species may frequently encounter conditions that make foraging difficult, giving context to storm avoidance in albatrosses. 
    more » « less
  3. Abstract Urbanization has dramatically altered Earth's landscapes and changed a multitude of environmental factors. This has resulted in intense land‐use change, and adverse consequences such as the urban heat island effect (UHI), noise pollution, and artificial light at night (ALAN). However, there is a lack of research on the combined effects of these environmental factors on life‐history traits and fitness, and on how these interactions shape food resources and drive patterns of species persistence. Here, we systematically reviewed the literature and created a comprehensive framework of the mechanistic pathways by which urbanization affects fitness and thus favors certain species. We found that urbanization‐induced changes in urban vegetation, habitat quality, spring temperature, resource availability, acoustic environment, nighttime light, and species behaviors (e.g., laying, foraging, and communicating) influence breeding choices, optimal time windows that reduce phenological mismatch, and breeding success. Insectivorous and omnivorous species that are especially sensitive to temperature often experience advanced laying behaviors and smaller clutch sizes in urban areas. By contrast, some granivorous and omnivorous species experience little difference in clutch size and number of fledglings because urban areas make it easier to access anthropogenic food resources and to avoid predation. Furthermore, the interactive effect of land‐use change and UHI on species could be synergistic in locations where habitat loss and fragmentation are greatest and when extreme‐hot weather events take place in urban areas. However, in some instances, UHI may mitigate the impact of land‐use changes at local scales and provide suitable breeding conditions by shifting the environment to be more favorable for species' thermal limits and by extending the time window in which food resources are available in urban areas. As a result, we determined five broad directions for further research to highlight that urbanization provides a great opportunity to study environmental filtering processes and population dynamics. 
    more » « less
  4. Personality predicts divorce rates in humans, yet how personality traits affect divorce in wild animals remains largely unknown. In a male-skewed population of wandering albatross ( Diomedea exulans ), we showed that personality predicts divorce; shyer males exhibited higher divorce rates than bolder males but no such relationship was found in females. We propose that divorce may be caused by the intrusion of male competitors and shyer males divorce more often because of their avoidance of territorial aggression, while females have easier access to mates regardless of their personality. Thus, personality may have important implications for the dynamics of social relationships. 
    more » « less
  5. Plastics have long been an environmental contaminant of concern as both large-scale plastic debris and as micro- and nano-plastics with demonstrated wide-scale ubiquity. Research in the past decade has focused on the potential toxicological risks posed by microplastics, as well as their unique fate and transport brought on by their colloidal nature. These efforts have been slowed by the lack of analytical techniques with sufficient sensitivity and selectivity to adequately detect and characterize these contaminants in environmental and biological matrices. To improve analytical analyses, microplastic tracers are developed with recognizable isotopic, metallic, or fluorescent signatures capable of being identified amidst a complex background. Here we describe the synthesis, characterization, and application of a novel synthetic copolymer nanoplastic based on polystyrene (PS) and poly(2-vinylpyridine) (P2VP) intercalated with gold, platinum or palladium nanoparticles that can be capped with different polymeric shells meant to mimic the intended microplastic. In this work, particles with PS and polymethylmethacrylate (PMMA) shells are used to examine the behavior of microplastic particles in estuarine sediment and coastal waters. The micro- and nanoplastic tracers, with sizes between 300 and 500 nm in diameter, were characterized using multiple physical, chemical, and colloidal analysis techniques. The metallic signatures of the tracers allow for quantification by both bulk and single-particle inductively-coupled plasma mass spectrometry (ICP-MS and spICP-MS, respectively). As a demonstration of environmental applicability, the tracers were equilibrated with sediment collected from Bellingham Bay, WA, United States to determine the degree to which microplastics bind and sink in an estuary based of grain size and organic carbon parameters. In these experiments, between 80 and 95% of particles were found to associate with the sediment, demonstrative of estuaries being a major anticipated sink for these contaminants. These materials show considerable promise in their versatility, potential for multiplexing, and utility in studying micro- and nano-plastic transport in real-world environments. 
    more » « less